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The ultimate goal of this exercise sheets is to produce an algorithm that can efficiently simulate
sample paths of a fractional Brownian motion on finite time grids.

Readers that already sufficiently familiar with the simulation of multivariate Gaussian random
variables might consider skipping Section 1.1. Who is also familiar with Gaussian processes may
start at Section 1.3.

After completing Problem 1 and 2 you will be able to simulate the sample paths of a fractional
Brownian motion very efficiently. Completing Exercise 1-12 will help you to develop the theoretical
background of the algorithm.

In case none of this is new to you, you might still consider taking a look at Problem 3 at the end
of the sheet, in which your are engaged to ponder about the problem of optimally stopping a
fractional Brownian motion.

1 Simulation of Gaussian processes

1.1 Multivariate Gaussian distribution

Before turning towards Gaussian processes, let us quickly recall the definition of the multivariate
Gaussian distribution.

Definition 1. Let X1; :::; Xn be real-valued random variables defined on a common probability
space. The vector X = (X1; :::; Xn) is said to have multivariate Gaussian distribution if for all
a2Rn the scalar product ha;X i has a normal distribution.

Exercise 1. Show that the covariance matrix �=(Cov(Xi;Xj))16i;j6n2Rn�n is positive semi-definite.

Exercise 2. Show that if the covariance matrix � is not positive definite, that at least one of the variates Xi
can be represented as a linear combination of the other variates.

Let Z1; :::; Zn be i.i.d. standard normal random variables. Since the some of two independent
normal random variables is again normal, it is straight forward to verify that Z =(Z1; :::; Zn) has
a multivariate Gaussian distribution.

Exercise 3. LetA2Rm�n be amatrix, �2Rn a vector and defineX=�+AZ. Show thatX has amultivariate
Gaussian distribution with covariance matrix �=AAT and mean �=E[X]:

Recall that a positive semi-definite matrix � has a Cholesky decomposition �=LLT , where L is
a lower triangular matrix. Using the previous exercise, we therefore can formulate the following
algorithm for simulating a multivariate Gaussian.

Algorithm 1
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Input :

¡ �2Rn�n positive definite covariance matrix

¡ �2Rn mean vector

¡ m2N number of samples

Output :

¡ m samples of multivariate Gaussian with mean � and covariance �.

1. Compute L such that �=LLT .

2. Repeat the following m times:

a) Simulate n independent samples from the standard normal distribution Z=(Z1; :::;Zn):

b) Save new sample �+LZ.

To implement this algorithm we further need to understand how to proceed with steps 1. and 2.a).
The simulation of independent normal random variables is beyond the scope of this exercise sheet
(look up Box-Muller transform for instance). In Python you can use the numpy package and the
command numpy.random.randn(n).

Regarding the computation of the Cholesky decomposition, one can use the fact that L is lower
triangular to compute its entries iteratively from the top to the bottom. Here is a simple Python
code that works for positive definite matrices:

import numpy as np

def cholesky(A):
L = np.zeros_like(A)
n, _ = A.shape
for i in range(n):

for j in range(i+1):
sum_ = np.sum(L[i] * L[j])
if i == j:

L[i, j] = np.sqrt(A[i, i] - sum_)
else:

L[i, j] = (A[i,j] - sum_) / L[j, j]
return L

Note that the costs of this algorithm of the order O(n3) (a third inner loop is hidden in the numpy
sum). Let us also note that there is - of course - a function in numpy that implements Algorithm
1: numpy.random.multivariate_normal(mean, cov).

1.2 Gaussian processes

Definition 2. Let I �R be an interval. A family of real valued random variables X = (Xt)t2I
defined on a common probability space is called a Gaussian process if for any (t1; :::; tn)2 In and
n2N the random variable

(Xt1; :::; Xtn) (1)

has a multivariate Gaussian distribution.

Note that the finite-dimensional distributions of the process X , i.e., the distribution of all vectors
(1), are characterized by the mean and the covariance function, which are respectively defined by

�(t) :=E[Xt] and C(s; t)=E[XsXt]¡E[Xs]E[Xt] s; t2 I:
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Simulating the Gaussian processX on a time grid ft0; :::; tng�I for some n2N with t0<t1< ���<tn,
then simply amounts to the simulation of the (n+1)-dimensional Gaussian random variable X :=
(Xt0; :::; Xtn), which we already have discussed in the previous section. However, as described in
the next section, in certain cases one can improve on the efficiency of the simulation.

1.3 Efficient simulation of certain stationary Gaussian processes

In Monte-Carlo and machine learning task it is often necessary to simulate a large amounts of
samples on fine grids in order to decrease errors and improve accuracy. The computational effort
of Algorithm 1 for generating m samples paths of a Gaussian process on a grid of size n is of the
order O(n3)+m�O(n2), the first term appearing form the computation of the Cholesky �=LTL
decomposition and the second term from the matrix multiplication LZ with the standard Gaussian
vector Z. In particular, its is the factor in front of the m that can make simulations infeasible.

In this section, we are going to discuss an algorithm that allows to simulate paths from certain
stationary Gaussian process with cost of the order m�O(n log n). The algorithm is based on a
matrix decomposition �=AAT (where S is embedded in �) that can be computed more efficiently,
but more importantly also allows to evaluate the matrix multiplication AZ more efficiently.

Definition 3. A process X =(Xt)t2R is called stationary if for any (t1; :::; tn)2Rn and � 2R it
holds

(Xt1; :::; Xtn) ==================
d
(Xt1+� ; :::; Xtn+�);

where ==================
d

denotes the equality in distribution.

Exercise 4. Show that a Gaussian process X is stationary if and only if the mean is constant E(Xt)� �2R

and the covariance function satisfies C(s; t)=C(0; t¡ s) for all s; t2R.

Assume that the grid ft0; t1; :::; tng�R is regular in the sense that there exists some � such that
tk= t0+ k� for k = 0; 1; :::; n. Denote by � the covariance matrix of the multivariate Gaussian
vector X := (Xt0; :::; Xtn), where X is a stationary Gaussian process with covariance function C.
Define ck :=C(t0; tk) for k=0; 1; ::::; n. Then the covariance matrix is of the form

�=

0BBBBBB@
c0 c1 ��� cn
c1 ��� ��� ������ ��� ��� c1
cn ��� c1 c0

1CCCCCCA:

A matrix of this form is called Toeplitz . This form is not yet what we need to obtain a more efficient
decomposition. Consider the following matrix that is obtained from the reflecting and shifting the
first row of �:

�=

0BBBBBBBBBBBBBBBBBBBBBB@

c0 c1 ��� cn¡1 cn cn¡1 ��� c2 c1
c1 c2 ��� cn¡2 cn¡1 cn ��� c3 c2
��� ��� ��� ��� ��� ��� ��� ��� ���

cn¡1 cn¡2 ��� c0 c1 c2 ��� cn¡1 cn
cn cn¡1 ��� c1 c0 c1 ��� cn¡2 cn¡1
cn¡1 cn ��� c2 c1 c0 ��� cn¡3 cn¡2
��� ��� ��� ��� ��� ��� ��� ��� ���
c1 c2 ��� cn cn¡1 cn¡2 ��� c1 c0

1CCCCCCCCCCCCCCCCCCCCCCA
2R2n�2n

This matrix satisfies the property that the ith row can be obtained by periodically shifting the first
row i-entries towards the right. Such matrices are called circulant . Clearly, our original covariance
matrix � is embedded in the upper-left block of �.
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Define the complex number !n=e¡�i/n and the vector qk=
�

1

2n
p !n

jk
�
06j62n¡1

for k=0; :::;2n¡1:

Exercise 5. Show for any k=0; :::; 2n¡ 1 that qk is an eigenvector of � with eigenvalue �k=
P
j=0
2n¡1 
j!n

jk,
where 
=(c0; c1; :::; cn¡1; cn; cn¡1; :::; c2; c1).

Exercise 6. Show that the matrix Q=

�
1

2n
p !n

jk
�
06j;k62n¡1

is unitary, i.e., Q:Q�= I:

From the above two exercises we see that

�=Q diag(�0; :::; �N)Q�: (2)

Note that if the eigenvalues �0; :::;�N of � are non-negative, then � is again a positive semi-definite
matrix and thus is a covariance matrix.

Exercise 7. Verify that if X̂ is a multivariate Gaussian vector with covariance matrix � then first n+ 1

coordinates X = X̂1:n+1 are Gaussian with covariance matrix �.

Assume now that � is positive definite. The decomposition (2) is almost the type of decomposition
that we need for the simulating from �, however, the matrix Q is complex valued.

Exercise 8. Define A=Qdiag( �0
p

; :::; �N
p

)Q� and show that A is a real matrix and satisfies �=AAT .

Hence, we have arrived with a suitable decomposition of the matrix P. However, at this point it is
not clear why this decomposition allows more efficient computations. Note that the multiplication
of a vector x2R2n with the matrix Q corresponds to a discrete Fourier transform, i.e.,

(Qx)k=
1
2n

p
X
j=0

2n¡1

xj!n
jk= 1

2n
p

X
j=0

2n¡1

xje
¡2�i jk

2n= 1
2n

p DFT(x)k:

Analogously the multiplication with Q� corresponds to an inverse discrete Fourier transform, i.e.,

(Q�x)k=
1
2n

p
X
j=0

2n¡1

xj!n
jk= 1

2n
p

X
j=0

2n¡1

xje
2�i

jk

2n= 2n
p

IDFT(x)k:

These multiplications can therefore be algorithmically computed using the fast Fourier transform
(fft). While the standard evaluation of Q�x would cost O(n2), using the fft this product can be
evaluated with costs O(n log n). The following exercise demonstrates how this possible.

Exercise 9. Let x2R2n and show that for k=0; :::; n¡ 1 it holds

DFT(x)k¡DFT(x)k+n=2
X
j=0

n¡1
x2je

¡2�ijk
n ; DFT(x)k+DFT(x)k+n=2

X
j=0

n¡1
x2j+1e

¡2�ijk
n :

Verify from the above identity that DFT(x) can be computed by using a divide-and-conquer routine.

We are finally ready to formulate an efficient algorithm for the simulation of the Gaussian process
X on the gird ft0+ k�jk=0; :::; ng given that associated matrix � is positive semi-definite.

Algorithm 2

Input :

¡ Mean �2R and covariance function C of a stationary Gaussian process

¡ ft0; :::; tng a regular time grid

¡ m the number of samples
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Output :

¡ m samples paths of the Gaussian process on the grid ft0; :::; tng.

1. Define 
 =(c0; :::; cn¡1; cn; cn¡1; :::; c1)2R2n with ck :=C(t0; tk) for all k=0; :::; 2n¡ 1.

2. Compute �=DFT(c) and verify that �k> 0 for all k=0; :::; 2n¡ 1.

3. Repeat the following m times:

a) Simulate 2n independent samples from the standard normal distribution
Z =(Z0; :::; Z2n¡1):

b) Compute X̂ =DFT
¡
diag

¡
�0

p
; :::; �2n¡1

p �
IDFT(Z)

�
.

c) Save new sample path �+ X̂0:n:

Problem 1. Implement Algorithm 2 as a Python function with input argumentsm, � and c=(c0; :::; cn) using
the scipy.fft module.

Hint: Use the automatic broadcasting in numpy/scipy. More precisely, feeding scipy.fft.iftt with an array
of shape (m; 2n) will apply the fft to each row.

Hint: Note for a real vector x the vector DFT(x) will have an hermitian symmetry and vice versa if y is a vector
with hermitian symmetry then IDFT(y) is a real vector. The scipy.fft module provides special commands for
these symmetries. In particular the line 3.b) can be expressed using scipy.fft.ihftt and scipy.fft.hftt.

Hint: Due to numerical errors you may check whether � is real valued with np.allclose(lam, np.real(lam)).

2 Simulation of Fractional Brownian Motion

A fractional Brownian motion (fBm) X =(Xt)t2R is a mean zero Gaussian process with a covari-
ance function given by

E[XtXs] =
1
2
(jtj2H+ jsj2H+ jt¡ sj2H); s; t2R;

where H 2 (0; 1] is called the Hurst parameter . In this section we will focus on the simulation of
this Gaussian process and therefore are neither going to discuss its properties in detail nor going
to elaborate on its use in applications. Nevertheless, let just mention that for H = 0.5 the process
is a standard Brownian motion and for H =/ 0.5 the process is not a semimartingale and not a
Markov process, which renders it as a typical example for methodologies that claim applicability
top processes beyond these two classes. Furthermore, the sample paths of X are Hölder continuous
for any coefficient strictly below H.

The following property will be important for simulation:

Exercise 10. The process is self similar, in the sense that for any �> 0 the process (�HX�t)t2R is also a fBm.

Indeed, using the above property, in order to simulate the fBm on a time grid f0;�; 2�; :::; n�g
for some �> 0 it suffices to simulate the process on the unit grid f0; 1; 2; :::; ng and then rescale
the resulting paths by �H: For the latter, we want to use the efficient algorithm from the previous
section, however, it is apparent that the fBm itself is not stationary. Nevertheless, we have the
following

Exercise 11. Show that the increment process �X := (Xt+1¡Xt)t>0 has the covariance structure

E[�Xs�Xt] =
1
2
(j(t¡ s)+ 1j2H+ j1¡ (t¡ s)j2H)¡ jt¡ sj2H ; s; t2R

and is hence stationary.

Summarizing the two previous observations we then obtain:
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Exercise 12. Let �> 0 and define the mean zero Gaussian vector X~ by

X~k :=�H
X
j=1

k

�Xj¡1; k=0; :::; n:

Then it holds that E[X~jX~k] =E[X�jX�k]. Hence X~ represents an evaluation of an fBm on the time grid
f0;�; 2�; :::; n�g.

It can be shown that covariance matrix of the fBm increment process on a regular grid can always
be embedded into a positive definite circulant matrix as described in the previous section. The
proof of this result is rather difficult an is beyond the scope of this exercise sheet. Nevertheless,
this fact grands us that we can apply the efficient Algorithm 2 to simulate increments of an fBm.
Thus we are finally able propose our algorithm for the simulation of an fBm:

Algorithm 3

Input :

¡ H the Hurst parameter

¡ n the size of the time grid

¡ D the mesh of the time grid

¡ m the number of samples.

Output :

¡ m samples paths of the fractional Brownian motion on the grid f0;�; 2�; :::; n�g.

1. Define c=
¡ 1
2
(jk+1j2H+ jk¡ 1j2H)¡jk j2H

�
06k6n¡1.

2. Use Algorithm 2 with c to simulate (�X(k))16k6m, where each �X(k) is a sample of the
increment process on f0;�; 2�; :::; (n¡ 1)�g.

3. For each k=1; :::;m save a new sample X(k):=
¡
�H

P
l=1
j

�Xl¡1
(k) �

06j6n:

4. Return (X(k))16k6m.

Problem 2. Implement the Algorithm 3 using your solution of Problem 1. Test the final outcome by first
simulating a the fBm on a small grid for a large number of samples and then calculating the empirical covariance
matrix using numpy.cov for different values of H. Then sample the fBm for n=100,�=

1

n
andH 2f0.1;0.5;0.9g

and plots the sample paths for comparison.

Optimal stopping of fractional Brownian motion

Let XH be a fBm with Hurst parameter H 2 (0; 1] on a probability space (
;F ;P) and consider
the filtration (Ft)t>0 generated by XH on the positive halfline, i.e., F t := �(XsH j06 s6 t): We
consider the problem of optimally stopping XH so that its expected value is maximized, i.e., the
problem of calculating

sup
�2S

E[X�
H];

where S is the set of all stopping times with respect to the filtration (Ft)t>0, i.e., S consists of all
random variables � :
! [0;1) such that f� 6 tg2Ft for all t>0. In simple words, this means that
the decision on whether to stop the process at time t can only depend on the observed evolution
of the process on the interval [0; t].

Problem 3. Think about possible stopping times that approximate the optimal stopping value of the fBm. In
particular consider the special case H=0.5 and the extreme case H=1. What is your guess for the dependence
of the optimal stopping value on H and where does it tend to for H! 0? You can also use your fBm simulator
from try out some strategies.
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